ICS 201 - Major 1: Term 111

Page 11 of 11

King Fahd University of Petroleum & Minerals

Information and Computer Science Department

ICS 201 – Introduction to Computing II
First Semester 2011-2012 (111)

Major Exam-1

Time allowed: 120 minutes
Saturday, Oct 15, 2011
	Name:
	

	ID#:
	

Please circle your section number below
	Section
	01
	02
	03
	05

	Instructor
	Zhioua
	Irfan
	Sukairi
	Sukari

	Day and Time
	SMW
08–08:50
	SMW
09–09:50
	SMW
10–10:50
	SMW
13:10–14:00

Notes:

1. The exam has FOUR questions and consists of ELEVEN pages.
2. You are expected to answer all questions.

3. This is a closed book exam.

4. Please free to use the back of the page. However, please make sure you indicate this in order for me to not miss it for grading.
	Question #
	Maximum

Mark
	Obtained

Mark

	1
	25
	

	2
	30
	

	3
	25
	

	4
	20
	

	Total
	100
	

Good Luck
Question 1 [25 Points (20 + 5)]

a) What is the right answer?
1) What does a derived class automatically inherit from the base class?

(a) instance variables

(b) static variables

(c) public methods

(d) all of the above

2) If the final modifier is added to the definition of a method, this means:

(a) The method may be redefined in the derived class.

(b) The method may be redefined in the sub class.

(c) The method may not be redefined in the derived class.

(d) None of the above.

3) Java does not use late binding for methods marked as:

(a) final

(b) static

(c) private

(d) all of the above

4) A class that implements an interface but only gives definitions for some of the method headings given in the interface is called a/an:

(a) concrete class

(b) abstract class

(c) discrete class

(d) friendly class

5) How can you prevent a class from being extended?

(a) Declare a class static.

(b) Declare a class private.

(c) Declare a class protected.

(d) Declare a class final.

6) Which of the following is false?

(a) An abstract class can have instance variables and non-abstract methods
(b) A subclass should implement all abstract methods or itself declared as abstract

(c) References of an abstract class can be declared, but they should refer to an object of the non- abstract subclass

(d) None of the above

7) Which of the following is true?

(a) A child class can extend a parent or implement an interface, but not do both.

(b) A child class can extend just one parent and can implement just one interface

(c) A child class can extend just one parent and can implement zero or more interfaces

(d) A child class can extend zero or more parents, and can implement zero or more interfaces

8) Which of the following is true?

(a) An abstract class cannot have any final method

(b) A final class cannot have any abstract method

(c) An abstract method can be declared private

(d) A public static method can be overridden

9) Assume that class A extends class B, which extends class C. Also all the three classes implement the method test(). How can a method in a class A invoke the test() method defined in class C (without creating an object from class C).

(a) test();

(b) super.test();

(c) super.super.test();

(d) It is not possible to invoke test() method defined in C from a method in A.

10) Can an abstract parent class have non-abstract children?

(a) No--an abstract parent must have only abstract children.

(b) No--an abstract parent must have no children at all.

(c) Yes--all children of an abstract parent must be non-abstract.

(d) Yes--an abstract parent can have both abstract and non-abstract children.

b) What is the output of the following TestClass:

public class Father

{

int y = 10;

public Father(int y)

{

this.y = y;

System.out.println(y);

System.out.println("Father");

}

public Father()

{

this(5);

System.out.println(y);

play();

}

public void play()

{

System.out.println("I'm grown up, i don't play!");

System.out.println(y);

}

}

Public class Child extends Father

{

int x = 10;

public Child(int x)

{

this.x = x;

System.out.println("Child");

System.out.println(x);

play();

}

public void play()

{

System.out.println("Let's play!");

System.out.println(x);

}

}

Public class TestClass

{

public static void main(String[]args)

{

Child c = new Child(7);

}

}
Answer

Question 2 [30 points]

Design a Ship class which has the following members:

· name: A field for name of the ship (String)

· year: A field for the year that the ship was built (String).

· totalShips: A count of total ships (objects) created.

· Appropriate constructors/accessors/mutators (As required).

· A getTotalShips() method to return the count of total ships.

· A toString() method to display ships name and the year it was built.

Design a CruiseShip that extends Ship class. The CruiseShip class should have following members:

1. maxPassenger: A field for maximum number of passengers it can carry.

2. totalCruiseShips: A count of total cruise ships (objects) created.

3. Appropriate constructors/accessors/mutators (As required).

4. A getTotalCruiseShips() method to return the count of total cruise ships.

5. A toString() method that overrides the toString() of the base class. This method should additionally display the ship type (i.e. Cruise) and the maximum number of passengers.

Design a CargoShip class that extends Ship class. The CargoShip class should have following members:

1. cargoCapacity: Cargo capacity in tons.

2. totalCargoShips: A count of total cargo ships (objects) created.

3. Appropriate constructors/accessors/mutators (As required).

4. A getTotalCargoShips() method to return the count of total cargo ships.

5. A toString() method that overrides the toStrong() of the base class. This method should additionally display the ship type (i.e. Cargo) and the cargo capacity.

Assume that the following TestShipClass class is given to you, complete the definition of the method printShipReport() in this class so that you get the output as shown below:

	public class TestShipClass {

 public static void main(String [] args){

Ship [] ships = new Ship[3];

ships[0] = new CruiseShip("Gold", "2000", 300);

ships[1] = new CruiseShip("Diamond", "2010", 400);

ships[2] = new CargoShip("RockHard", "2009", 1000);

printShipReport(ships);

 }

 //add your code here for the method printShipReport
}//end of class

	OUTPUT

Total Ships: 3

Total Cruise Ships: 2

Total Cargo Ships: 1

Ships Details

Ship name: Gold Year: 2000

Type: Cruise
 Max Passenger Capacity: 300

Ship name: Diamond Year: 2010

Type: Cruise
 Max Passenger Capacity: 400

Ship name: RockHard Year: 2009

Type: Cargo
 Max Cargo Capacity: 1000

ADD CODE FOR Ship CLASS

ADD CODE FOR CruiseShip CLASS

ADD CODE FOR CargoShip CLASS

Question 3 [25 points]
[image: image1.emf]

C ellPhone

[image: image2.emf]

C ellPhone

Consider the above inheritance hierarchy. Solid arrows denote inheritance relationships while dotted arrows denote implementation relationships.

a) Is there something wrong with the above hierarchy? Justify your answer.

b) Implement a method totalPriceIOS that takes as input an array of TouchScreenDevices and computes and returns the total price of all iOS based devices in that array.

c) Implement a method AndroidDetails that takes as input an array of TouchScreenDevices and prints on the screen the details of all Android based devices in that array.
Question 4 [20 points]
Examine the following Employee class.

class Employee implements Comparable

{

 private String firstName;

 private String lastName;

 private int birthYear;

 String getFirstName() { return firstName; }

 String getLastName() { return lastName; }

 int getBirthYear() { return birthYear; }

 public Employee(String f, String l, int year)

 {

 firstName = f; lastName = l; birthYear = year;

 }

Finish the compareTo method using all three of the instance variables. Compare two employees by first looking at their last names, If the names are different, return the value the compareTo method in the String class returns with the last names. If the last names are equal, look at the first name and return the value the method compareTo in the String class returns. If both parts of the name are equal, return the difference of the birthyears so that the older employee precedes the younger employee.

Also finish the copy constructor and the equals method in the next page.

Note:
Comparable API:
java.lang
Interface Comparable
	int
	compareTo(Object o)
Compares this object with the specified object for order.

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

public Employee(Employee other) //copy constructor
{
}

// if ob is null or is not of the right type exit the system
public int compareTo(Object ob)

{
}
// reuse the compareTo method

public boolean equals(Object ob)

{

}
TouchScreenDevice

public abstract double getPrice();

public static void printDetails(){ … }

interface

iOS�

Tablet

public double getPrice(){…}

public static void printDetails(){ … }

CellPhone

public double getPrice(){…}

public static void printDetails(){ … }

Android�

interface

GalaxyS

public double getPrice(){…}

public static void printDetails(){ .. }

iPhone

public double getPrice(){ …}

public static void printDetails(){ … }

GalaxyTab

public double getPrice(){…}

public static void printDetails(){ .. }

iPad

public double getPrice(){…}

public static void printDetails(){ .. }

